TrellOss®-L MPF Porous Ti Interbody System
A new foundation for growth.
A New Foundation for Growth
The TrellOss-L implant is designed with rigid teeth to help resist implant migration. The implant’s bullet-tip nose aids in implant insertion and is compatible with all MPF plates.
System Features
A 3D printed titanium interbody platform featuring a scaffold structure with 70% porosity and a 7 micron roughened surface topography to foster a cellular relevant environment for adhesion and bone ingrowth.1
Porosity
Open architecture with 70% porosity including varying pore sizes of 300, 500, and 700 microns that mimic cancellous bone allowing for a conducive environment for cellular activity.1,5,6,7
Structure
- Bullet-tip nose to aid in implant insertion.
- Scaffolding structure provides additional surface area 2,3 and an elastic modulus similar to PEEK8.
- Central windows for graft packing and containment.
Texture
- Rigid teeth help to resist implant migration.
- 7 micron surface texturing enhances the wicking nature9 and creates an environment for potential cellular adhesion.2,3,4
Sterile Packed
Implants are sterile packed to reduce risk of contamination and hospital reprocessing costs.
Compatibility
Compatible with all MPF plates
Specifications
Widths
18 mm, 22 mm.
Lordosis
0˚, 8˚, 14˚, 20˚.
Heights**
8 mm–18 mm.
**2 mm increments.
Lengths***
45 mm–60 mm, 50 mm–60 mm.
***5 mm increments.
MPF Plate Sizes
1-hole plate, 2-hole plate, 4-hole plate.
MPF Screws
Self-tapping, Bi-cortical.
5.5 mm, 6.0 mm diameters.
30 mm–60 mm lengths.***
***5 mm increments.
Additional Information
Contact Us
USA: 720-894-9016
To submit a complaint, please email SpineComplaints@zimvie.com
10225 Westmoor Dr. Westminster, CO 80021 USA
To obtain a copy of the current Instructions for Use (IFU) for full prescribing and risk information, please call 720-894-9016.
References
- McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D-printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J 2018;18(7):1250-1260.
- Olivares-Navarrete R, Hyzy SL, Slosar PJ et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine 2015;40(6):399 -404.
- Olivares-Navarrete R, Hyzy SL, Gittens RA, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J 2013;13(11):1563 -70.
- Rao PJ, Pelletier MH, Walsh WR, et al. Spine Interbody Implants: Material Selection and Modification, Functionalization and Bioactivation of Surfaces to Improve Osseointegration. Orthop Surg 2014;6:81 -89.
- Ponader S, von Wilmowsky C, Widenmayer M, et al. In vivo performance of selective electron beam-melted ti-6al-4v structures. J Biomed Mater Res A 2010;92A:56 -62.
- Li JP, Habibovic P, et al.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 2007;28:2810.
- Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474 -91.
- Permeswaran, V., (2019) Elastic Modulus Characterization of Porous Titanium TrellOss™ Structure, 2922.1-GLBL-en-REV1219, Zimmer Biomet Spine, Westminster, CO
- Permeswaran, V., (2019) Measuring the Wicking Nature of Porous Titanium TrellOss™ Structure, 2921.1-GLBL-en-REV1219, Zimmer Biomet Spine, Westminster, CO
Legal Manufacturer
Nexxt Spine, LLC
14425 Bergen Blvd, Suite B
Noblesville, IN 46060