TrellOss®-A SA Porous Ti Interbody System
A new foundation of growth
Introducing TrellOss-A SA Porous Ti Interbody System
A 3D printed porous titanium interbody device with aligned 300, 500, and 700 μm pores and a 7 μm roughened surface; TrellOss-A SA is designed to provide appropriate endplate coverage with three footprint offerings, and allow for consistent bone purchase with optimized location of screw pockets. Implants are sterile-packed to reduce the risk of contamination and hospital reprocessing costs.
TrellOss-A SA Highlights
- Rigid teeth help to resist implant migration
- Central window for graft packing and containment
- Optimized location of screw pockets to allow for consistent bone purchase
A New Foundation for Growth
Porosity
Open architecture with 70% porosity including varying pore sizes of 300, 500, and 700 μm that mimic cancellous bone allowing for a conducive environment for cellular activity1,5,6,7
Structure
Scaffolding structure provides additional surface area2,3 and an elastic modulus similar to PEEK8
Texture
7 μm surface texturing enhances the wicking nature9 and creates an environment for potential cellular adhesion2,3,4
Resources
Brochures & Surgical Technique Guides
TrellOss®-A SA Porous Ti Interbody System Brochure
ZV0219 REV A 11/22 (U.S.)Download Clinical Trial PDFTrellOss®-A SA Porous Ti Interbody System Surgical Technique Guide
ZVINST0014 REV B 01/23 (U.S.)Download Clinical Trial PDFAdditional Information
References
1. McGilvray KC, Easley J, Seim HB, et al. Bony ingrowth potential of 3D printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. Spine J 2018;18(7):1250-1260.
2. Olivares-Navarrete R, Hyzy SL, Slosar PJ et al. Implant materials generate different peri-implant inflammatory factors: poly-ether-ether-ketone promotes fibrosis and microtextured titanium promotes osteogenic factors. Spine 2015;40(6):399 -404.
3. Olivares-Navarrete R, Hyzy SL, Gittens RA, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J 2013;13(11):1563 -70.
4. Rao PJ, Pelletier MH, Walsh WR, et al. Spine Interbody Implants: Material Selection and Modification, Functionalization and Bioactivation of Surfaces to Improve Osseointegration. Orthop Surg 2014;6:81 -89.
5. Ponader S, von Wilmowsky C, Widenmayer M, et al. In vivo performance of selective electron beam-melted ti-6al-4v structures. J Biomed Mater Res A 2010;92A:56 -62.
6. Li JP, Habibovic P, et al.: Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Biomaterials 2007;28:2810.
7. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26(27):5474 -91.
8. Permeswaran, V., (2019) Elastic Modulus Characterization of Porous Titanium TrellOss™ Structure, 2922.1-GLBL-en-REV1219, Zimmer Biomet Spine, Westminster, CO
9. Permeswaran, V., (2019) Measuring the Wicking Nature of Porous Titanium TrellOss™ Structure, 2921.1-GLBL-en-REV1219, Zimmer Biomet Spine, Westminster, CO.
Legal Manufacturer
Nexxt Spine, LLC
14425 Bergen Blvd, Suite B
Noblesville, IN 46060
Ph: 317.436.7801
Fax: 317.245.2518